
R beyond data analysis

Adrian Stanciu

2024-06-03



You might know r from data analysis. But, r can do much
more than that for you! This short book supports the seminar
with the same title offered by Asst. Prof. Adrian Stanciu at
University of Luxembourg.

https://www.uni.lu/fhse-en/people/adrian-stanciu/


Table of contents

Preface 6

7

1 General introduction 8
Why this seminar? . . . . . . . . . . . . . . . . . . . . 8

1.0.1 Reason 1 . . . . . . . . . . . . . . . . . . 9
1.0.2 Reason 2 . . . . . . . . . . . . . . . . . . 9
1.0.3 Reason 3 . . . . . . . . . . . . . . . . . . 10

What else is good to know? . . . . . . . . . . . . . . . 10
1.0.1 Some wizardry stuff . . . . . . . . . . . . 10
1.0.2 GitHub . . . . . . . . . . . . . . . . . . . 11
1.0.3 Pushing, pulling, cloning and commiting . 12
1.0.4 GitHub client . . . . . . . . . . . . . . . . 13

Illustrative example . . . . . . . . . . . . . . . . . . . 14
1.0.1 Background . . . . . . . . . . . . . . . . . 14
1.0.2 The plan . . . . . . . . . . . . . . . . . . 15

2 R universe 16
R (the console and language) . . . . . . . . . . . . . . 17
The basics (the very basics!) . . . . . . . . . . . . . . . 17

2.0.1 Objects . . . . . . . . . . . . . . . . . . . 18
2.0.2 Vectors . . . . . . . . . . . . . . . . . . . 19
2.0.3 Data tables . . . . . . . . . . . . . . . . . 20

Functions . . . . . . . . . . . . . . . . . . . . . . . . . 22
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Base R vs. Packages . . . . . . . . . . . . . . . . . . . 28
RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Advanced resources . . . . . . . . . . . . . . . . . . . . 30

3 Automatization 31
Elements and structure . . . . . . . . . . . . . . . . . 32
Knit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3



Live documents . . . . . . . . . . . . . . . . . . . . . . 35
3.0.1 Path dependencies . . . . . . . . . . . . . 36
3.0.2 The set up . . . . . . . . . . . . . . . . . 36
3.0.3 Importing data . . . . . . . . . . . . . . . 37
3.0.4 Plain text vs. live text . . . . . . . . . . . 38
3.0.5 Live text in focus . . . . . . . . . . . . . . 40
3.0.6 Automated graphs and tables . . . . . . . 40

Knit with parameters . . . . . . . . . . . . . . . . . . 45
3.0.1 Example progression . . . . . . . . . . . . 46
3.0.2 Changing setup to parameterized report . 47
3.0.3 Knitting the document . . . . . . . . . . . 48
3.0.4 Something to do by yourself . . . . . . . . 49
3.0.5 Another table example . . . . . . . . . . . 49

Advanced resources . . . . . . . . . . . . . . . . . . . . 50
3.0.1 Towards shiny apps . . . . . . . . . . . . 50
3.0.2 Quarto . . . . . . . . . . . . . . . . . . . 51

4 Self-publish 52
Prepping Quarto . . . . . . . . . . . . . . . . . . . . . 53
Website . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.0.1 .qmd . . . . . . . . . . . . . . . . . . . . . 54
4.0.2 .yml . . . . . . . . . . . . . . . . . . . . . 55
4.0.3 .css . . . . . . . . . . . . . . . . . . . . . . 57
4.0.4 _site folder . . . . . . . . . . . . . . . . . 57
4.0.5 Deployment . . . . . . . . . . . . . . . . . 57

Online book . . . . . . . . . . . . . . . . . . . . . . . . 62
4.0.1 .qmd . . . . . . . . . . . . . . . . . . . . . 62
4.0.2 .yml . . . . . . . . . . . . . . . . . . . . . 62
4.0.3 .bib . . . . . . . . . . . . . . . . . . . . . 64
4.0.4 Deployment . . . . . . . . . . . . . . . . . 65

Advanced resources . . . . . . . . . . . . . . . . . . . . 66

5 Shiny apps 67
The set-up . . . . . . . . . . . . . . . . . . . . . . . . 68
R script files . . . . . . . . . . . . . . . . . . . . . . . 69
Shiny apps structure . . . . . . . . . . . . . . . . . . . 71
Code for UI . . . . . . . . . . . . . . . . . . . . . . . . 72

5.0.1 Layout . . . . . . . . . . . . . . . . . . . . 73
5.0.2 Input types . . . . . . . . . . . . . . . . . 74
5.0.3 Conditional panels . . . . . . . . . . . . . 76
5.0.4 Tabset . . . . . . . . . . . . . . . . . . . . 77

4



Code for server . . . . . . . . . . . . . . . . . . . . . . 78
5.0.1 Reactive objects . . . . . . . . . . . . . . 78
5.0.2 Input objects . . . . . . . . . . . . . . . . 79
5.0.3 Output objects . . . . . . . . . . . . . . . 80

Run the app locally . . . . . . . . . . . . . . . . . . . 81
Deployment . . . . . . . . . . . . . . . . . . . . . . . . 82
(Optional) Push to GitHub . . . . . . . . . . . . . . . 83
Progress illustrative example . . . . . . . . . . . . . . 83
Advanced resources . . . . . . . . . . . . . . . . . . . . 87

6 Parting words 88
Advanced resources . . . . . . . . . . . . . . . . . . . . 89

About the author 90

References 91

5



Preface

6



The book is divided into several chapters as follows:

• Chapter Chapter 1: This is an introduction to the pur-
pose and mission of this seminar, and provides useful in-
formation to get one started.

• Chapter Chapter 2: This part is a gentle introduction in
the r universe.

• Chapter Chapter 3: This part addresses the notion of
automatization of workflows.

• Chapter Chapter 4: This part provides tips on self-
publishing content online.

• Chapter Chapter 5: This part introduces shiny-apps as
tools for communicating research output.

• Chapter Chapter 6: This is an overview of the learned
material and contains some tips for individual work.

To illustrate the benefits of working with R beyond data anal-
ysis while transitioning to a holistic work flow, we will build on
an example that evolves throughout the chapters Chapter 3–
Chapter 5.

7



1 General introduction

r is a programming language that can be used to develop tools
that harvest the potential of the Internet while it can help you
develop a holistic approach to your work routine.

This seminar aims to only provide a gentle introduction to some
of the things that r can do for you. After the seminar, those in-
terested can pursue further their interests and use the advanced
resources provided to dive deeper into the topics.

Its contents target developing skills that can be applied
throughout the university studies as well as on the job
market.

Why this seminar?

The are a couple of reasons why someone might be interested
in using r beyond data analysis.

8



1.0.1 Reason 1

First, r is a programming language thus it is a gateway to other
“hard-core” programming languages. For someone who wants
to re-invent oneself, r can be a useful companion during tran-
sitioning from closed-ended data analysis software like SPSS,
Mplus or Stata toward a language based logic in data analysis
which can be elevated to a holistic work flow.

When using data analyis software like SPSS, Mplus or Stata,
one has at one’s disposal powerful tools specifically designed to
cover the unique purposes of data analysis. This means however
also that one needs to simultaneously master a number of other
software in writing up, storing and disseminating one’s work.
A typical work routine involves:

a. importing a dataset in the preferred data analytical soft-
ware like SPSS,

b. performing the needed analyses,
c. copy/ pasting the result output into a text editor like

Word,
d. bouncing forth and back between steps a, b, and c until

final results are ready,
e. saving the manuscript as a PDF copy.

Sometime, when one follows the open science practices, there
are a couple of extra steps involved:

f. upload the PDF copy to an online repository,
g. upload scripts and material to the online repository (after

ensuring a good documentation),

Meanwhile, with the help of r one can develop a work routine
wherein all the “a” through “g” steps, as well as several other,
can be integrated into one work flow in time.

1.0.2 Reason 2

The second reason why one might be interested in r beyond
data analysis is the appeal of using an open source and com-
munity maintained work environment.

9



This usually means that a dedicated team of specialists develop
and maintain software like SPSS, Mplus or Stata which most
often than not is available against costs. On the other hand, r is
open source which means that the code is publically available
and everyone can contribute to its development. The Cran
website hosts an archive and recent developments.

1.0.3 Reason 3

Third, r is a programming language around which a number of
excelent tools have been developed. All of these tools, some of
which are covered in this seminar, are likewise open source and
can be used in an integrated work environment. This means
that if one wants to transition to r, one can have access to
a universe of new posibilities including, for example, creating
websites, web applications as well as working seamlessly and
simultaneously with several other programming languages in-
cluding python and SQL.

What else is good to know?

1.0.1 Some wizardry stuff

Well, if you know programming, it is all too easy. If you don’t,
nothing makes sense.1

One of the first things that one needs to do before using r be-
yond data analysis is to connect all the dots so-to-speak. r
beyond data analysis relies on an integrated work environment
that includes the programming language itself r, a work en-
vironment interface like RStudio as well as online repositories
and servers, for general purposes like GitHub and for specific
purposes like shiny-apps the shinyapp.io.

To seamlessly write code and publish it online while ensuring
that it does what it is supposed to, there has to be an open
channel between all these elements – the work environment
needs to be integrated, that is.

1I estimate I know about 0,01 %.

10

https://cran.r-project.org/


To integrate all of these things one needs:

a. an account on these platforms,
b. establishing a communication channel between platforms

and working machine (your personal computer),
c. encrypting this communication channel.

I won’t cover all the required steps into detail here. This online
resource provides everything one needs.

For the sake of simplicity, which happens to be the fundamental
piece for the work flow we address in this seminar, one needs to
have Git installed on one’s local machine. You might already
have it, so please check it first. Note that installing Git might
take some time, so don’t be surprised if that happens.

– Install for Windows by downloading from https://gitforwindows.org/
(here).

– Install for Mac or Linux using Homebrew. Follow the steps
here https://brew.sh/(here).

Tip 1: About Git

Git is a free and open source distributed version control
system designed to handle everything from small to very
large projects with speed and efficiency https://git-scm.
com/.

1.0.2 GitHub

Technically, this section and the one above are difficult to tease
apart. For those interested, this online resource can answer
further questions and is a good starting point for an advanced
workflow with r, Git and GitHub.

GitHub is an online platform that facilitates collaboration, stor-
age and publishing of almost anything programming-related.
It is an online and publically accessible repository in that any-
one with an account can create repositories, upload and down-
load codes and projects. Basically it is facebook for program-
mers.

11

https://happygitwithr.com/install-git#macos
https://happygitwithr.com/install-git#macos
https://gitforwindows.org/
https://brew.sh/
https://git-scm.com/
https://git-scm.com/
https://happygitwithr.com/bookdown-cheat-sheet.html


A relative of GitHub is GitLab which is specifically designed for
internal use in institutions. If you want to publish your code
online (website and online books, for example) and make it ac-
cessible to everyone in the world then you should use GitHub.
If however, you’d like to work on a project internally, only with
colleagues from your institution (or other registred institutions)
you should use GitLab, which is available through your institu-
tions. At the University of Luxembourg, there is a designated
GitLab platform.

Open an account on https://github.com/.2

After the GitHub account is live, the next step is to open and
encrypt the communication channel between your local machine
and your GitHub repository account. This step can be tricky,
so take your time and equip yourself with lots of patience. All
the steps can be found here. A simplified, and somewhat visual,
description is provided also here3

1.0.3 Pushing, pulling, cloning and commiting

It is helpful to understand first the concepts of pushing,
pulling, cloning and committing. These are verbs in the
English language thus they indicate actions that one can do.
These actions all are in reference to the code one writes and
the current location of the code and where one wants the code
to be placed.

• pushing is basically the action of uploading the written
code or files from the local machine onto the online repos-
itory through the distribution control system, Git that
is. pushing only has a resemblance to uploading because
pushing a code onto an online repository means simulta-
neously uploading it and creating a history of the code in
the project. In some cases, pushing a code also means it

2Note that it is not quite clear where the data is stored on these servers.
So, if you are concerned about data protection issues, be sure you do
not upload sensitive information. For the sake of this seminar this is
not an issue, but be warned!

3This resource is also a step-by-step guide for creating a website using r
and associated tools. This will be covered is Chapter 4 of this short
book.

12

https://github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://adrianstanciu.eu/sitedummy.html#The_set-up


“activates its” functions. In chapter Chapter 4, for exam-
ple, we will see that the written code on the local machine
becomes a book or a website once it is pushed onto the
GitHub online repository.

• pulling is in many ways the opposite of the pushing
verb. In this case, one is downloading the code or files
from the online repository on the local machine. This can
come in handy when one is working with others on a com-
mon project, and, while gone, someone else has updated
the project; Someone else has pushed a code update, for
example. Also, this is a useful thing when one uses variant
machines or when one has deleted by mistake the project
from the local machine, which can happen!

• cloning is in many ways copy-pasting a repository from
the online GitHub server to the local machine. The out-
come is a straightforward one: Cloning a repository to the
local machine means also that the history, code changes
and dependencies are reproduced on the local machine.

• committing is exactly what you think it might mean in
the English language – to commit to something or some-
one has a finality aspect to it, or enduring, or fixed, if
you will. When writing code or changing code (or files for
that matter) on the local machine, you commit it to your
project when you are happy with it. This then means that
the updated code is now integrated in the project, it can
be traced backwards in the history of the project. The
nice thing about working this way is that once a code up-
date or file is committed to the project, the project itself
is updated/ modified accordingly.

1.0.4 GitHub client

Writing code and creating Rmarkdown files on the local machine
is rather straightforward. For that, one needs only an r client,
and typically RStudio (download here, will be covered in more
detail in Chapter 2) is the preferred one.

13

https://posit.co/


However, as soon as online repositories, collaborative work and
co. become relevant, one needs to communicate with these
non-local machines.

One way to do this is through line coding in git, which can
be accessed via the Terminal in the RStudio. This can be
straightforward and eventually becomes a routine. This cheet
sheet provides all the necessary gitcommands.

Meanwhile, if one prefers using git through a friendlier vi-
sual interface, then one would want a GitHub client. GitHub
Desktop can be downloaded for free and has a simple interface.
Check this resource to getting started with GitHub Desktop.

Illustrative example

1.0.1 Background

Throughout Chapter 3–Chapter 5, we will use a sample of the
data reported in Stanciu et al. (2017)4.

Stanciu et al. (2017) studied how people stereotyped varying
social groups in terms of warmth and competence across several
regions in Romania. For this seminar, we will use data from
a sample of n = 100 participants selected at random from the
reported data set.

The data includes the following variables:

• ppn participant number,
• gen self-reported gender of participant as female (1) or

male (2),
• age chronological age as it was self-reported in years,
• res region or residence of the participant,
• res_other open ended question regarding region or resi-

dence of the participant,
• men_warm participant’s stereotypeical evaluation of men

in terms of warmth,

4The article can be downloaded also via Orbilu at the University of Lux-
embourg. See here

14

https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://desktop.github.com/
https://desktop.github.com/
https://docs.github.com/en/desktop/overview/getting-started-with-github-desktop?platform=windows
https://orbilu.uni.lu/bitstream/10993/60024/1/Stanciuetal2017.pdf


• men_comp participant’s stereotypeical evaluation of men
in terms of competence,

• wom_warm participant’s stereotypeical evaluation of
women in terms of warmth,

• wom_comp participant’s stereotypeical evaluation of
women in terms of competence.

Stereotypical evaluations were assessed on Likert scales with
these answer options:

1 = strongly disagree, 2 = disagree, 3 = undecided, 4 = agree,
5 = strongly agree.

Tip 2: Access data

Data and meta-data referred throughout this short book
are downloadable directly from inside this book. Navigate
to the left panel of the book, and press the download icon
under book title.
Likewise, all r scripts, .Rmd and .qmd illustrative examples
are provideed in .zip compressed files.

1.0.2 The plan

In Chapter 3 we will use this sample to illustrate how certain
steps in working with data can be automatized. We will write
static text and “living” texts whereby we use r code to popu-
late text dynamically with information automatically retrieved
directly from data.

In Chapter 4 we will see how the work from previous chapter
can be integrated in a self-published book or as content for the
personal website. We will focus on creating tables and graphs
using the sample.

In Chapter 5 we will see how we can present results in an in-
teractive manner using online applications. We will focus on
how to create tables and graphs as well as “live” texts for the
online app.

15



2 R universe

To paraphrase, R is a dialect of another programming language,
namely S. You can read more about the history of R (and S)
here. Long story short, R is a programming language derived
from S that was available only for commercial packages. R
was created by Ross Ihaka and Robert Gentleman in 1991
at the University of Auckland, New Zealand. In 1995, it be-
came an open source code thanks to contributions by Martin
Mächler.

In this short book, I will use interchangeably r and R.

The online and free book by Roger D. Peng R programming
for data science is a good further reading for those interested.

The online and free book by Oscar Baruffa Big book of R is
an excelent collection of available resources to learn and master
R.

16

https://bookdown.org/rdpeng/rprogdatascience/history-and-overview-of-r.html
https://bookdown.org/rdpeng/rprogdatascience/
https://bookdown.org/rdpeng/rprogdatascience/
https://www.bigbookofr.com/


Figure 2.1: The R console

R (the console and language)

When most people talk about r they mean both the program-
ming language and a console. Unless they are IT experts who
can make the distinction with ease. But, for the purpose of
the seminar, or as a typical r-user for what is worth, it really
doesn’t matter.

When working with r one needs a designated console for writing
the code, and this is easy to detect as r-console (see Figure
Figure 2.1).

To download R, go to the cran website and select the file suit-
able for your operating system. Unzip or install that file and
the r-console will be installed on your machine.

The basics (the very basics!)

This seminar will cover only the very absolute basics of working
in r. Designated courses are available at the university and
elsewhere as part of summarschools or workshops. Of course,
one can learn r using the freely available online content. Use
YouTube and Google for that. For example, this online resource
is a good starting point.

17

https://cran.r-project.org/
https://r02pro.github.io/


The first thing to notice in the r console is the symbol > followed
by the text placer |. This specifies the line where to write the
r code.

Once the code is written and the key Enter is pressed, the code
basically runs or is computed by the machine which returns an
outcome. (Here the symbol > is not visible but the outcome
line can be identified through the use of squared brackets[…])

2+2

[1] 4

2.0.1 Objects

It is useful to work with objects in r. That is, whatever code
you write, place it into an object and then run the object itself.
See below.

# no object created
2+2

[1] 4

# object is first created and then run
sum<-2+2
sum

[1] 4

Using objects simplifies a lot the work flow because you can
combine objects in any way you can imagine!

# creates a second object called mean
mean<-mean(c(1,2,5,7,8,9))
mean

[1] 5.333333

18



# and then adds the two objects 'sum' and 'mean' together
result<-sum+mean
result

[1] 9.333333

2.0.2 Vectors

There are multiple types of objects that one can create in r.
The most important ones are vectors and data tables.

For simplicity reasons, vectors can be numeric, character strings
or logical. A vector is scalable meaning that it can hold up to
a gazilion of elements.

# example of numeric vectors
vec1<-c(1,3,66,9,121)
vec1

[1] 1 3 66 9 121

# example of character string vector
vec2<-c("A","Ab","This or that","C","d")
vec2

[1] "A" "Ab" "This or that" "C" "d"

# example of logical vector
vec3<-c(TRUE,TRUE, FALSE, TRUE)
vec3

[1] TRUE TRUE FALSE TRUE

One can do all sorts of things with and to vectors. See for
example here.

19

https://r02pro.github.io/vector.html


2.0.3 Data tables

Data tables combine multiple vectors. Data tables can com-
bine all sorts of vectors and can have varying internal struc-
tures. When one downloads (or uses one own’s) dataset, that
is typically a data table in a specific format, .sav for SPSS
or .xlsx for Microsoft Excell. Data formats can also be .dat,
.csv, .asci and so on.

A data table in r comprises multiple vectors and involves an or-
ganization wherein typically rows represent entries in the data
table and columns represent vectors of the data table. In other
words, rows represent cases and columns represent variables.

# create a simple data table
df<-data.frame(col1=vec1,

col2=vec2)
df

col1 col2
1 1 A
2 3 Ab
3 66 This or that
4 9 C
5 121 d

# one can then access the varying elements of the data table

# access col1
df[,1]

[1] 1 3 66 9 121

# access first row
df[1,]

col1 col2
1 1 A

20



# access entry at first row and col1
df[1,1]

[1] 1

One can perform all sorts of actions on the data table as a
whole or on elements of the data table.

# checks the elements of the data table
str(df)

'data.frame': 5 obs. of 2 variables:
$ col1: num 1 3 66 9 121
$ col2: chr "A" "Ab" "This or that" "C" ...

One can see that col1 is a numeric num vector and col2 is a
character string char vector.

# provides a summary of the data table
summary(df)

col1 col2
Min. : 1 Length:5
1st Qu.: 3 Class :character
Median : 9 Mode :character
Mean : 40
3rd Qu.: 66
Max. :121

One can see that different summary stats are available for num
and chr vectors.

# performs an addition on the numeric vector of the data table
df[,1]+100

[1] 101 103 166 109 221

21



Functions

To be entirely honest, r functions are something a bit advanced.
But, some rudimentary functions can be written by beginners
too. The trick is to figure out what is repetitive in the code that
one wants to write. This logic proves useful when one needs to
apply a command on a number of objects for an undetermined
number of times.

Functions are easy to spot in R because they are labeled as
such and have a unique code structure: function(){}.

The rule of thumb is () defines the elements that are fed into
the function while {} contains the function itself.

Here is an example. We use a dataset that comes pre-installed
with R (iris), perform an addition on all the numerical vari-
ables and then write a function to simplify the task.

# see the first ten rows of the pre-installed dataset iris
head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

# numerical columns are then columns 1 through 4

# adds 3 to all numerical columns
head(iris[,1:4] + 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 8.1 6.5 4.4 3.2
2 7.9 6.0 4.4 3.2
3 7.7 6.2 4.3 3.2
4 7.6 6.1 4.5 3.2
5 8.0 6.6 4.4 3.2
6 8.4 6.9 4.7 3.4

22



# add 77 to all numerical columns
head(iris[,1:4] + 77)

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 82.1 80.5 78.4 77.2
2 81.9 80.0 78.4 77.2
3 81.7 80.2 78.3 77.2
4 81.6 80.1 78.5 77.2
5 82.0 80.6 78.4 77.2
6 82.4 80.9 78.7 77.4

# write a function
# this function takes two arguments: a dataset 'df' and a constant 'n'
func1<-function(df,n){

tmp <- Filter(is.numeric, df) # we first filter the dataframe for numeric columns

tmp + n # we then add the constant to all the numeric columns
}

# we apply the function and add 3 to all numeric columns of iris
# we only ask to see the first ten rows of the outcome using head()
head(func1(iris,3))

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 8.1 6.5 4.4 3.2
2 7.9 6.0 4.4 3.2
3 7.7 6.2 4.3 3.2
4 7.6 6.1 4.5 3.2
5 8.0 6.6 4.4 3.2
6 8.4 6.9 4.7 3.4

# we apply the function and add 99 to all numeric columns of another pre-installed dataset 'mtcars'
# we only ask to see the first ten rows of the outcome using head()
head(func1(mtcars,99))

mpg cyl disp hp drat wt qsec vs am gear carb

23



Mazda RX4 120.0 105 259 209 102.90 101.620 115.46 99 100 103 103
Mazda RX4 Wag 120.0 105 259 209 102.90 101.875 116.02 99 100 103 103
Datsun 710 121.8 103 207 192 102.85 101.320 117.61 100 100 103 100
Hornet 4 Drive 120.4 105 357 209 102.08 102.215 118.44 100 99 102 100
Hornet Sportabout 117.7 107 459 274 102.15 102.440 116.02 99 99 102 101
Valiant 117.1 105 324 204 101.76 102.460 119.22 100 99 102 100

Packages

An R package contains code, documentation, and sometimes
even data. These packages are developed to serve a specific
purpose such as simplifying a work routine or perform advanced
computational routines. Packages can be downloaded for free
and then immediately used. Of course, everyone can write an
R package, which of course is not a easy thing to do. But if
at any point and for whatever reason you need to, then know
that it is possible.

Everything one needs to know about packages can be found
in this comprehensive book by Hadley Wickham1 and Jennifer
Bryan.

r packages use the philosophy of working with functions to sim-
plify otherwise highly complex code. Some of the fundamental
packages to start with are tidyverse (for data preparation
and manipulation but also contains several other useful pack-
ages like ggplot2 for creating graphics). Other packages that
are the focus of this seminar are rmarkdown (the fundamen-
tals of Chapter 3 through Chapter 5), quarto (needed for self-
publishing books and website; covered in Chapter 4),tinytex
(for latex distributions aka. creating PDFs), shiny (for web
applications; covered in Chapter 5).

What you absolutely need to know about packages is that the
vast majority do not come pre-installed with the r console but
can be installed by request. Installing any package in R follows
this basic routine:

1He is THE r expert. See his website.

24

https://r-pkgs.org/
https://hadley.nz/


# installs `tidyverse`
install.packages("tidyverse")

# makes it available for R on your local machine
# this step is crucial if you want to have access to all the containing function
library(tidyverse)

One trick that I think it is absolutely simple to use but can
save you a lot of nerves is using the package pacman to install
any other packages. The nice thing about it is that pacman can
first check if a package is already installed on the local machine
and if not, it downloads it and installs it from Cran.

We can now install the basic packages needed for the seminar
and mentioned above.

# first, we install the `pacman` package
install.packages("pacman")

# then, we use the function `p_load` from the `pacman` package to install `tidyverse`, `rmarkdown`, `shiny` packages
pacman::p_load(tidyverse,rmarkdown,bookdown,quarto,shiny)

Tip 3: R Packages with websites

(Almost) Every package has a designated website. Visit
the package website for examples on how to use and
also to identify the functions contained. For example
https://www.tidyverse.org/

Tip 4: R Packages documentation

Call the package documentation by typing in a question
mark followed by the name of the package or function
contained in a package. For example ?tidyverse

Let’s see as an example how the function filter from the uni-
verse of packages tidyverse works. Before that, I want to
introduce the pipe operator %>%2 which is instrumental for r
users. And it simplifies a lot the work flow!

2The pipe operator itself is introduced most comonly in the package dplyr

25



%>% follows the logic of, simply and un-elegantly put, “work
that happens in the background until the desired output is
retrieved”. It also means that using %>% you can compress into
one code otherwise a long chain of steps that involve creating
objects which are then subjected to new operations.

# apply the function filter to the dataset mtcars
# we filter the column cyl such that only cars with a cyl < 5 are displayed
head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

mtcars %>% filter(cyl < 5)

mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

# we filter the column cyl such that only cars with a cyl exactly equal to 8 are displayed
mtcars %>% filter(cyl == 8)

contained in the universe of packages tidyverse. But, it can be used
differently in other packages too.

26



mpg cyl disp hp drat wt qsec vs am gear carb
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

As an example of the usefulness of the pipeline operator %>%,
let us apply a double filter. First, on the column cyl and then
on the column horse power hp.

# without the pipeline operator
a<-mtcars %>% filter(cyl < 5)
b<-a %>% filter(hp > 100)
b

mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

# with the pipeline operator
mtcars %>% filter(cyl < 5) %>% filter(hp > 100)

mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

Of course, this example is too simplistic but imagine having to
write a gazillion of lines of code when you could reduce that
to a couple. Throughout the seminar we use the pipe operator
%>% almost everywhere!

27



Base R vs. Packages

Figure 2.2

A fair warning!

Base R is complex but stable. Packages are simple to use but
depend on the community for their maintenance. So, the de-
cision is to use something complex but stable or simple but
unstable.

For the purpose of this seminar, and for most of the things a
regular R-user needs, working with packages is indeed the way
to go.

If at any point, you are concerned that the package(s) you
use can get outdated, I recommend using the [sic!] package
groundhog which ensures reproducible code. This package ba-
sically goes back in time and installs on the local machine the
desired version of the package.

See how it works on this website.

RStudio

In Figure 2.3 you can see the four panels of RStudio, the (a)
Console/terminal, (b) Source, (c) Environment/history, and
(d) Files/plot/packages/help.

• a) Console/terminal Here is where the r console is in-
tegrated in RStudio. You can type in your code, have
your results previewed, as well as any errors (those hap-
pen quite a lot) that occur in your coding.

28

https://groundhogr.com/


Figure 2.3: RStudio panels

• b) Source This panel is where we will do most of the
work throughout the seminar. Think of this panel as the
notebook – you write, you draw, you comment on your
own work, etc. This panel allows you to communicate
with the source material, which can be r (the language),
html (the language) and also lets you populate with con-
tent the files needed for the website, for instance.

• c) Environment/history This panel is a place where
you can see the history of your work. It saves for you
the code you ran (either in the console or source panels)
and also it contains sort of short-cuts to any data-related
work you might have done.

• d) Files/plot/packages/help This panel allows you to
preview what you’ve communicated to the machine (lap-
top) to do. You will note there are several tabs, but the
most important one for the seminar are:

– Files is sort of Windows explorer in Windows or
Finder on Mac OS. It is here that you can navi-
gate between folders on the local machine, delete,
rename, or more. Here you can also open files in the
source panel.

– Packages gives you an overview of packages that are
installed and active on the local machine.

29



– Help is, well, where you will see helpful information
about a function or package.

On this youtube channel there is a helpful beginners guide on
R and RStudio. Take some time to familiarize yourself with
them.

Tip 5: Learning resources

If your RStudio version is 2024.04. or newer, you should
note in the Environment/ History panel a tab “Turorial”.
That panel contains tutorials for working in R. Install first
the package learnr as indicated and let yourself guided
through a number of interactive exercises.

Advanced resources

Together with a colleague, Dr. Ranjit SINGH from GESIS -
Leibniz Institute for the Social Sciences, I prepared a workshop
on r for beginners. All the material is open access via GitHub.

You can clone the repository on your local machine and do all
the exercises.

Navigate first to the page of the repository and then clone it to
your local machine: https://github.com/adrianvstanciu/rworkshop_open.

30

https://www.youtube.com/watch?v=lVKMsaWju8w
https://www.gesis.org/en/institute/about-us/staff/person/Ranjit.Singh


3 Automatization

Automatization of the work flow, as I mean it throughout the
seminar, is a holistic or integrated approach to the work flow
whereby repetitive tasks can be reduced through the use of code
and a designated work environment.

This approach can be useful to reduce working time, ensur-
ing reproducible outcome as well as enhancing work trans-
parency.

Among the domains where this is an asset are:

a) Research: Data analysis and results interpretation, writ-
ing manuscripts, and adhering to open science.

b) Applied sector: Writing of repetitive reports.
c) Education: Transparent homework.

This chapter covers the basics of creating and working in an
integrated work environment.

31



Elements and structure

The first thing we need is to install the package rmarkdown (and
all dependencies, meaning all the packages that rmarkdown
needs to function properly). An introduction to R Markdown
is available on the official website1.

# installs package `rmarkdown` and all dependencies
install.packages("rmarkdown", dependencies = TRUE)

After the package rmarkdown, including its dependencies, is
successfully installed, we should be able to create and work in
.Rmd files.

Create your first .Rmd file and give it a name. For exam-
ple, example.Rmd. You should see it now lower-right panel
Files/Packages/Help.

Figure 3.1: Create your first RMarkdown file

Tip 6: Workflow simplified with projects

I recommend always working with R projects which
makes it easy for code dependencies and gives structure to

1RMarkdown is by now old generation. The new generation is quarto,
covered in Chapter 4, which keeps all the RMarkdown traits while it
simplifies even more the user-experience.

32

https://rmarkdown.rstudio.com/articles_intro.html


your work flow. To associate your project to an .Rproj,
go to File and create a New project. Make sure you asso-
ciate the current folder you are working in with the Rproj.
This guide can help further.

Once the .Rmd has been created, you should be able to open
and edit it. It should look like this.

Figure 3.2: RMarkdown document

In Figure 3.2 there are numbered lines from 1 to 30. These
indicate lines in the rmarkdown file. We refer to these to discuss
elements of the file.

• Lines 1 through 5 (note the ---) hold the yaml header
element. Here is where you indicate the characteristics of
the entire rmarkdown document, and it includes for ex-
ample the kind of output file you want generated, title
of the document or date of the document version. Many
other yaml attributes exist and depending on your goals,
you can easily find them online using a version of the
search string yaml rmarkdown attributes.

• Lines 7 through 9 (as well as 17-20 and 25-27) are

33

https://bookdown.org/daniel_dauber_io/r4np_book/starting-your-r-projects.html


code chunks. In this case, they are r code chunks, as
signaled by the small letter r. Code chunks are what
makes rmarkdown documents so powerful. Integrating
code chunks into text facilitates the creation of live docu-
ments. In other words, plain text merged with code. Each
code chunk has multiple attributes that can modify the
way the output of the code is integrated and presented
in the output document. Note for example at line 7 {r
setup, include=FALSE}.

– setup is the name of the code chunk and this is
extremely helpful to give structure to the document
but also when cross-referencing figures and tables in
the document.

– , the comma is crucial here because it signals that
what follows are settings of the code ouput

– include=FALSE is one such setting attribute and in-
dicates that the code output is not integrated in the
output document BUT it runs in the background.

Knit

Figure 3.3

Figure 3.3 is an overview of the workflow from an .Rmd (ed-
itable rmarkdown document) to an output document which can
be .pdf, .html, .docx and so on. One crucial step happens
during the knit of .Rmd file. Basically, in this step you knit ev-
erything from the .Rmd document together. The name comes
from knitting, which is, well, creating something nice and cre-
ative from nothing.

In fact, the very Figure 3.4 above was knited to the final doc-
ument.

The knit function comes pre-installed with RStudio and can
be found in the source panel. Identify it, and knit your first
.Rmd file first into a .pdf and then into a .html file.

34



Figure 3.4: Knited bike cover

Tip 7: Latex distributions for PDF

If knit to PDF didn’t work, it might be because we
need a latex distribution on the machine that r can work
with. Try installing the package tinytex (Read more on
https://yihui.org/tinytex/)

# to install tinytex distribution
install.packages('tinytex')
tinytex::install_tinytex()
# to uninstall TinyTeX, run tinytex::uninstall_tinytex()

Once you knit the .Rmd file, a new file will be created in the
designated folder. Voilà - you just created your first PDF and/
or HTML document.

Live documents

For the purpose of this seminar, I call live documents those
documents that are coded to retrieve data and/ or information
from external source material (e.g., datasets or meta-data such
as from Excel sheets). This is the building block for creating
all sorts of automatized reports.

35



3.0.1 Path dependencies

Since we are working inside an .Rproj, all dependencies are
already set up. This helps because when interacting with ex-
ternal source material we need to specify where the code should
look for it. This is possible also without working in an .Rproj
but the dependencies are increasingly more complex to set up.
For one, the migration from one operating system to the other
may break these dependecies. Furthermore, you need to find
the file path on the local machine and then include it in the
code. Note that in case of deploying (uploading) the project on
GitHub the code will break because, of course, the dependen-
cies are only locally relevant. If, however, we work in .Rproj
and we push all the project files on GitHub, then we need not
worry about file paths, these are by default set up through the
use of the project.

Return to the first .Rmd we previously created. Open it in
RStudio.

Once opened, we may choose to delete the default content,
leaving only the yaml header intact. Or we may choose to
keep the default content. I choose to delete it for the sake of
simplicity.

3.0.2 The set up

We can start by setting up the work environment. This means,
we should first install the packages we’d need in the process.

We install using pacman the packages tidyverse, readxl
(for reading Excel sheets), haven (for reading SPSS files),
sjlabelled (for dealing with labelled dataframes), kable and
kableExtra (for creating tables).

install.packages("pacman")

pacman::p_load(tidyverse,readxl,haven,sjlabelled,kable, kableExtra)
# note: this exact code chunk might end up looking differently in the short book
# this is becauase i'd install packages as needed

36



3.0.3 Importing data

Next, we import our dataset in .sav format and the Excel sheet
in .xlsx format. This will allow us access to the contents of
those external source material which we can integrate in our
final document.

To import these external source material, remember to use ob-
jects to store that information. In other words, we import the
source material and assing it to objects that we can then per-
form varying actions onto.

# create an object dataframe example `dfex` and assign to it the .sav file `sample.sav` that was introduced previously
dfex<-haven::read_sav("data/sample.sav")

# create an object movies metadata `dfmv` and assign to it the .xlsx file `movies.xlsx`
# note the different paths to these files
# note that we specify which sheet to read too; here only sheet 1 is imported
dfmv<-readxl::read_excel("mat/movies.xlsx",1)

# next, we check if the source material was imported successfully by observing the first lines in the tables
head(dfex)

# A tibble: 6 x 9
ppn gen age res res_other men_warm men_comp wom_warm wom_comp

<dbl> <dbl+lbl> <dbl> <dbl+lbl> <chr> <dbl+lb> <dbl+lb> <dbl+lb> <dbl+lb>
1 459 1 [Female] 24 5 [Iasi] -99 3 [Und~ 4 [Agr~ 3 [Unde~ 4 [Agre~
2 592 2 [Male] 21 5 [Iasi] -99 3 [Und~ 4 [Agr~ 3 [Unde~ 3 [Unde~
3 634 2 [Male] 21 NA petrosani 4 [Agr~ 5 [Str~ 4 [Agre~ 4 [Agre~
4 369 1 [Female] 30 8 [Gala~ -99 NA NA 4 [Agre~ 4 [Agre~
5 121 1 [Female] 21 4 [Timi~ -99 4 [Agr~ 3 [Und~ 3 [Unde~ 4 [Agre~
6 127 1 [Female] 20 4 [Timi~ -99 4 [Agr~ 4 [Agr~ 4 [Agre~ 2 [Disa~

head(dfmv)

# A tibble: 4 x 6
Movie Actor Like Why Grade Wikilink
<chr> <chr> <chr> <chr> <dbl> <chr>

1 John Wick Keanu Reeves Yes Fight ~ 10 https:/~
2 Call me by your name Timothee Chalamet Yes Beauti~ 10 https:/~

37



3 Terminator Arnold Schwarzenegger Yes Arnold 9 https:/~
4 4 months 3 weeks and 2 days <NA> Yes Portra~ 8 https:/~

Figure 3.5: Example .Rmd file

If all went well, your .Rmd should look similar to mine (see
Figure 3.5).

3.0.4 Plain text vs. live text

In some ways, what we have coded thus far is also an autom-
atized work routine in that the .Rmd document automatically
retrieves the external source material every single time when it
is knit-ed into a PDF or HTML file.

This is however not so helpful because the display of those con-
tents are static, or as plain information. Static in the sense
that we would still have to read and retrieve the desired sum-
mary and/ or information from specific combinations of rows-
columns by hand.

With a bit of work we can transition from plain text to live
text. And here is where the proper automatization of the work
flow begins.

With live text, or in-line code, we can integrate code chunks
into plain text so that through knit function rmarkdown au-
tomatically enhances the plain text with the desired informa-
tion from the external source material. This can be extremely

38



helpful when writing repetitive reports, for instance Another
example is when we want to quickly have a look at progress of
a data collection process.

The tricky part with live text is to know exactly what to retrieve
from the external source material and in what kind of vector
that information is stored. Character (text) and numerical vec-
tors behave differently and have different characteristics.

Let us write our first short paragraph that integrates plain text
and live text.

. . .

BEGIN EXAMPLE

This is an example of how automatization can be implemented
in the work flow. My list of movies include 4 entries. The
title of those movies are John Wick, Call me by your name,
Terminator, 4 months 3 weeks and 2 days. Is there a movie
that I actually don’t like on that list, well, the answer is that I
dislike exactly 0 movies on that list.

END EXAMPLE

. . .

This is tricky to observe here, so I attach an image of the actual
.Rmd document.

Figure 3.6: Live paragraph in .Rmd

Copy the text from this code chunk into your .Rmd file and it
should look like in Figure 3.6.

This is an example of how automatization can be implemented in the work flow. My list of movies include `r nrow(dfmv)` entries. The title of those movies are `r dfmv$Movie`. Is there a movie that I actually don't like on that list, well, the answer is that I dislike exactly `r dfmv %>% filter(Like %in% c("No","no","NO")) %>% nrow()` movies on that list.

39



3.0.5 Live text in focus

We’ve seen that live text can be easily integrated into plain text
to create a final document that looks nice. We’ve also seen that
the actual .Rmd looks differently because of the in-line coding
that supports the automatization of the document.

To write in-line code you only need to follow this simple struc-
ture `r 1+1`. Wrap r inside backtrace brackets, add space
followed by the code.

If we were to add to the list of movies new entries and we
would still want to write that exact paragraph from above then
we would simply knit the rmarkdown document and everything
would be automated for us, including the counting of how many
entries are in the list, what the title of those movies are and
how many movies we actually dislike from that list.

To do this, open the Excel sheet using Microsoft Excel. Type in
one or two new entries following the given structure. Save the
Excel and then return to RStudio and knit the .Rmd file. You
will notice how in the final document the newly added entries
in the movie list are now part of the paragraph.

Tip 8: Watch out for structure

This automatization only works if the structure of the
external source material remains unchanged with updates.

3.0.6 Automated graphs and tables

One other benefit of working with automated reports is that
tables and graphs are automatically updated with new data.
This is rather straightforward - one needs to identify the pre-
ferred table format and graph layout, and integrate it in a re-
port. With updated data, the report will automatically update
contents of the created table and graphs.

To illustrate this, we work with sub-samples from the Stanciu
et al. (2017) dataset.

40



Remember that we have assigned the sample.sav dataset as
dfex dataframe in R previously. This dataframe contains in-
formation from N = 100 study participants. See the dataset
description in Chapter 1.

We subset the dfex dataframe into a much smaller dataframe
dfex_1 containing n = 15 study participants and a some-
what larger dataframe dfex_2 containing n = 60 study
participants.

# we remove all the labels using the package sjlabelled and mutate
# as factors columns gen and res
# this step makes it easier later on to work with plots
# note that it is not a necessary step in general but only for the sake of
# simplicity here
dfex<-dfex %>% sjlabelled::remove_all_labels() %>%

mutate(gen=factor(gen),
res=factor(res))

# subsamples 15 study participants at random
tmpdf1<-sample_n(dfex,15)
# subsample 60 study participants at random
tmpdf2<-sample_n(dfex,60)

3.0.6.1 Graphs

We code a simple plot using the package ggplot2 from
tidyverse and submit the three dataframes to the code.

1

2

3

4

5

1 2
Gender

S
te

re
ot

yp
e 

of
 w

ar
m

th

(a) warmth

1

2

3

4

5

1 2
Gender

S
te

re
ot

yp
e 

of
 c

om
pe

te
nc

e

(b) competence

Figure 3.7: Stereotype

41



Let us now create this imaginary scenario. We save the two
smaller dfex on the local machine as .sav datasets. This step
is usually not necessary when the dataset you want to use gets
updated by itself.

haven::write_sav(tmpdf1,"data/tmpdf1.sav")
haven::write_sav(tmpdf2,"data/tmpdf2.sav")

Now, we’re going to pretend that tmpdf1, tmpdf2 and dfex
are all progressive datasets, meaning that the sample size N
increases from 15 in tmpdf1 to 100 in dfex. We’re then going
to ask for the sample graphs as above in each of the three
instances. I won’t cover this step here in detail but this can be
easily done independently using this small twist.

# import dataset into one object and then subject this object to the ggplot code

# 1 - imports dataset into object tempdf
tempdf<-haven::read_sav("data/tmpdf1.sav")

# 2 - applies the ggplot to the dataset
ggplot(tempdf, aes(x=gen, y=wom_warm)) +

labs(x="Gender",
y="Stereotype of warmth") +

geom_boxplot() +
theme_light()

ggplot(tempdf, aes(x=gen, y=wom_comp)) +
labs(x="Gender",

y="Stereotype of competence") +
geom_boxplot() +
theme_light()

# 3 - for illustration purposes, repeat step 1 with each
# of the three datasets (tmpdf1,tmpdf2 and dfex)
# making sure they are assigned into the same object tempdf.
# As long as the ggplot code is applied to a dataset with the same structure
# and variable labels the output will be updated automatically.

42



Figure 3.8: Automated graphs

If all went well, your .Rmd would look similar to mine (see
Figure 3.8).

3.0.6.2 Tables

You can knit a table to your document using knitr, kable
and/ or kableExtra packages. Note that there can be differ-
ences in whether or not a package returns the desired table
layout depending on whether the final knit-ed document is in
PDF or HTML format. For the sake of simplicity, we only focus
in this short book on final documents in HTML format.

dfmv %>% knitr::kable(caption="Simple table using knitr::kable()",format = "pipe")

Table 3.1: Simple table using knitr::kable()

Movie Actor LikeWhy GradeWikilink
John
Wick

Keanu
Reeves

Yes Fight
scenes

10 https://en.wikipedia.org/wiki/John_Wick_(film)

Call me
by your
name

Timothee
Chala-
met

Yes Beautiful
love story

10 https://en.wikipedia.org/wiki/Call_Me_by_Your_Name_(film)

TerminatorArnold
Schwarzeneg-
ger

Yes Arnold 9 https://en.wikipedia.org/wiki/The_Terminator

43



Movie Actor LikeWhy GradeWikilink
4
months
3 weeks
and 2
days

NA Yes Portrayal of
life in
communist
Romania

8 https://en.wikipedia.org/wiki/4_Months%2C_3_Weeks_and_2_Days

This is a simple task: Import Excel tables in R and then inte-
grate the contents into a final output document. But, imagine
you’d want to manipulate somehow the contents of the source
material table and create your own table that can be automat-
ically updated with new input in the source material table.

For instance, you might want to create a table of all the movies
listed in the source material table where an actor you admire
appears in addition to your least liked actor. Say, Keanu Reeves
is a liked actor whereas Alec Baldwin might be a least liked
actor.

# does some data manipulation to retrieve the required information
tmptbl<-dfmv %>%

filter(Actor %in% c("Keanu Reeves", "Alec Baldwin"))

# creates an empty table holder that is our summary table that we'd
# want to include in the final output document
extbl<-tibble(

like=tmptbl[ tmptbl$Grade >= 8 & tmptbl$Like %in% c("Yes","No"), ]$Like,
name=tmptbl[ tmptbl$Grade >= 8 & tmptbl$Like %in% c("Yes","No"), ]$Actor,
movie=tmptbl[ tmptbl$Grade >= 8 & tmptbl$Like %in% c("Yes","No"), ]$Movie,
wiki=tmptbl[ tmptbl$Grade >= 8 & tmptbl$Like %in% c("Yes","No"), ]$Wikilink

)

Now we knit the table to the final document. Note that in this
particular case no movie by actor Alec Baldwin was listed in
the external source material.

44



extbl %>% knitr::kable(caption="Movies graded 8 or more from liked and least like actors", format="pipe")

Table 3.2: Movies graded 8 or more from liked and least like
actors

like name movie wiki
Yes Keanu

Reeves
John
Wick

https://en.wikipedia.org/wiki/John_Wick_(film)

Open Microsoft Excel movies.xlsx and add one or more
movies by actor Alec Baldwin while pretending you dislike
the author. Or, you modify the code above and replace the
two actors with actors you dislike and like and update the
Excel sheet accordingly making sure you maintain the sheet
structure.

Then run the code and you should be able to see updated tables
now. The code should like something like in Figure 3.9.

Figure 3.9: Code for tables in .Rmd

Knit with parameters

One way to simplify even more the tasks in automatization of
the workflow is to use parameters in knit-ing a final document.
More on working with parameters, and how to publish param-
eterized reports, can be read here.

Parameters are characteristics of the document that are repet-
itive both throughout the document and along the iteration of
various versions of the document.

45

https://bookdown.org/yihui/rmarkdown/parameterized-reports.html


Say, you’d want to automatize the writing of a report in each
year so the year is a parameter of the report because data,
text and tables will have to refer to the in-focus year and thus
update the document accordingly.

Say, you’d want to automatize the analysis of data in ways that
tables and graphs are identical but for the grouping variable
and year of data collection. Grouping variable and year of
data publication are parameters of the document because they
repeatedly appear throughout the code.

What makes working with parameters useful is the dynamic
and user interface this approach brings to automatization of
the work flow. Imagine that you’d want colleagues or superi-
ors to easily have access to repeated reports but they do not
posses the coding skills required. You can create a parameter-
ized report for them and they can use a simple user interface
(shiny interface that will be covered in details in Chapter 5)
to retrieve the documents they are interested in.

3.0.1 Example progression

We can transform parts of the .Rmd example into parameters
and then knit the final document using a user interface.

An intuitive parameter is the name of actors in the Excel sheet
movies.xlsx. We have seen that actors Keanu Reeves and
Alec Baldwin are liked and not so liked but, most importantly,
we have seen that if one adds entries to that external source
material the table will be updated. But, now imagine that we
want to personalize that list of movies with our very own liked
and disliked actors.

We could also parameterize which of the stereotype evaluation
we’d want to use for graph creation. Remember there were four
such variables in the sample.sav dataset, two each for men and
women and each gender was evaluated in view of warmth and
competence.

46



3.0.2 Changing setup to parameterized report

To work with parameters, we first need to define what these
are in the yaml of the rmarkdown document.

Figure 3.10: Modified yaml header for paramtereized reports in
.Rmd

In Figure 3.10, I highlighted brownish the modification from
the previous .Rmd file. Throughout the code lines 5–18,
we’ve added two parameters (actor and stereotype) to
the rmarkdown document, which are introduced by the yaml
attribute params:. These parameters are assigned to objects
that can be used in r as seen in the code chunk at lines
36–42.

Figure 3.11: Modified code for paramterized reports in .Rmd
modified

To accommodate parameters in the previously written code, we
need to make some small modifications to the code as seen in

47



Figure 3.11. Red arrows point to the exact location of param-
eters in the modified code.

Tip 9: Dataframe modification

Note in Figure 3.10 (or Figure 3.11 for that matter) that
we’ve slightly modified the dataframe so that it gets easier
to pass it through parameterization. See lines 91–93 where
we’ve modified the data structure to long format.

3.0.3 Knitting the document

knit-ing a document with parameters is as simple as 1-2-3.

Figure 3.12: Knit with parameters

Once the parameterized rmarkdown is built, we can knit it with
parameters as show in Figure 3.12.

Nagvigate to the knit button as indicated by the red arrow,
open the drop-down menu and from there select “knit with
parameters” and following, a window as indicated in Figure 3.12
will appear.

We recognize the two parameters we set up above in the yaml
header and used throughout the code: “Actor” and “Stereotype
evaluation”. Note that these are changeble parameter traits
meaning that in the yaml header we can use the attribute label
to re-label as per our preference.

We have set the attribute input: select in both cases to in-
dicate how the parameter behaves. With input: select, we

48



indicate a list of choices to the parameter from which we can
then select only one (case of stereotype) or multiple (case of
actor).

3.0.4 Something to do by yourself

Going back to the “Knit with Parameters” window, all the
choices we have pre-programmed will appear here. This also
mean that if we want to add something, we can simply add it
to the yaml header and the r code will automatically recognize
it. Beautiful, clean, and easy.

Play with the “Knit with Parameters” a bit. You could, for
example, add to the list of actors Timothee Chalamet while
deleting one of the other actors. See what happens in the win-
dow and in the knit-ed output document.

To make things a bit more advanced, open the Microsoft Excel
file and add new entries making sure you follow the preset for-
mat. Update as desired the choice list in the yaml header and
then knit using parameters. What output do you get?

3.0.5 Another table example

One other way to work with parameterized reports is to code
the document such that it creates tables (or anything else for
that matter) using a specific dataset. Basically, if the dataset
format is identical but contains different N sizes or was col-
lected by different teams or at different times, then parameter-
ized reports can facilitate the creation of repeated reports at a
button’s click.

Remember, we first need to set up the new parameter in the
yaml header. Try it yourself following the steps above and then
use the code below.

# we assign the parameter sampledf to an object sampledf
# containing the dataset itself
# we use paste0() function to integrate the parameter into a string object
# that tells r where to find the dataset in the .Rproj (the file path)
sampledf<-paste0("data/",params$sampledf)

49



sampledf

abc<-haven::read_sav(sampledf)
head(abc) # shows the first lines in the data frame
nrow(abc) # shows the n size of the data frame

# assign parameterized data to an object dataframe
abc %>%

sjlabelled::remove_all_labels() %>%
pivot_longer(contains("warm") | contains("comp")) %>%
group_by(name) %>% # we group by variable name created previously (background step)
summarise(mean=mean(value, na.rm = TRUE), # we use missing remove (na.rm)

sd=sd(value, na.rm = TRUE),
min=min(value, na.rm = TRUE),
max=max(value, na.rm = TRUE))

Advanced resources

In this day and age, technology evolves with mind-blowing
speeds. This makes it hard to always keep up. Such happens
also with the universe of tools available in r.

3.0.1 Towards shiny apps

Paramterized reports use a shiny user interface. We will cover
shiny apps in Chapter 5. But for now be as creative as possi-
ble.

For example, think of a nice graph you could build plotting the
age of study participants and their stereotypical evaluation of
men and women in terms of warmth and competence. Use the
sample.sav or the shorter datasets we created previously.

Create a new parameter age having the input: slider at-
tribute. An example of how to do it is given here. Either
follow that example or try doing it by yourself.

50

https://bookdown.org/yihui/rmarkdown/params-knit.html


3.0.2 Quarto

Building on rmakrdown et co., the relative quarto is making
everything much, much easier. Once the basics of rmarkdown
are secured, the transition to quarto is extremely smooth.2

What is quarto and what makes it so advantageous? See for
yourself here.

Use quarto to create presentation slides using the revealjs
format. Start from here.

Tip 10: Presentations in Quarto

Build on the code we’ve covered so far. Write text, dy-
namic text from data, and incorporate images in your
presentation slides created in Quarto.

2We cover quarto begining with Chapter 4.

51

https://quarto.org/docs/gallery/
https://quarto.org/docs/presentations/revealjs/


4 Self-publish

Publishing content online is very easy today. One can use
WordPress and similar platforms to create a website, blogs and
so on.

Why, then, use r to publish content online?

Through R we can create websites and online books that we
can store on online repositories like GitHub and maintain a high
degree of control over the structure, contents, and visibility of
the website/ book. Moreover, self-publishing using r is one way
to integrate varying work-routines towards a greater goal – that
of communicating own research, consultancy job involving data
science, to name just a few examples.

If you work with data that comes from your data collection
efforts or you use secondary data (publically available data),
then self-publishing content online through r can facilitate the
integration of data analysis and content creation steps.

For this section, we will use quarto to create both websites and
books. Using quarto is a step forward from other approaches
(quarto is a new generation RMarkdown document), including

52



the way the present book was rendered - using the old genera-
tion RMarkdown files.

Prepping Quarto

Quarto is a new generation RMarkdown. It retains all the func-
tions of the RMarkdown files from before while it enhances and
simplifies several other work flows. Basically, Quarto makes it
much much much easier for everyone to create presentations,
live documents, websites, books and so on.

One can even integrate shiny functionality into Quarto doc-
uments. For the present seminar, however, we will introduce
shiny apps as separate tools (see Chapter 5).

See the official quarto website here.

To create content using quarto we need:

1 - r, which we download and install as described in Chap-
ter 2.

2 - RStudio, which we download and install as described in
Chapter 2.

3 - Quarto, which can be downloaded here and installed follow-
ing the indicated steps. Make sure you choose the installation
package that suits your operating system.

After you’ve successfully installed r, RStudio, and quarto
on your computer, we can start with creating websites and
books.

Website

In Chapter 3, we’ve seen that working in Rproj simplifies the
work flow including, for example, presetting path dependencies
relative to the project folder.

We will use the logic of projects here (and for books) as well.
Open RStudio and create a new project Quarto website. See
Figure 4.1.

53

https://quarto.org/
https://quarto.org/docs/get-started/


(a) Step 1 (b) Step 2

Figure 4.1: Steps to creating a Quarto Website project

When you create the project, there will be several files created
by default: .qmd, .yml, .css as well as a folder “_site”. The
files and folder already contain the fundamental structure of a
working website.

To open this default website on your local computer, navigate
inside the folder “_site” and open on your Internet browser the
.html1 file index.html.

Every website (and online book) has such an index.html file.
This file indexes the other files composing the website (or
book).

4.0.1 .qmd

Figure 4.2: Basic structure of a .qmd file

1.html files are specific types of file that are used online

54



We can see the by now familiar structure including the yaml
header at lines 1-3, the r code chunk at lines 9-11 and the static
text.

Tip 11: Quarto markdown

.qmd is the new generation .Rmd

We can also see the Render button on the upper bar where the
knit button would be in an old generation RMarkdown file.

We can edit this file in virtually identical manner to any other
.Rmd file. I say virtually identically because the .qmd file comes
with extra benefits making it easier to control the formatting
of content on the page. One can easily implement some .html
features such as div using the :::{} blocks2. Read more on
the basics of .qmd here.

Figure 4.3: Two columns using div blocks

See for example how a two columned format looks like in Fig-
ure 4.3. Include it in your .qmd file and then render it. See
how it looks.

4.0.2 .yml

Three elements are observable when opening the default .yml
file: project, website, and format. See Figure 4.4.

2Some div blocks require four : instead of three, for example ::::{}. Ad-
ditional : indicate therefore upper levels of div code embededdness.

55

https://quarto.org/docs/output-formats/html-basics.html


Figure 4.4: Elements of the .yml file

First, the element project defines the type of the project you
work one. It can be a website as well as a book.

Second, the element website defines attributes of the website.
In Figure 4.4 we can see attributes “title” and “navbar”. title
allows us to give a title to the website. navbar is short for
navigation bar. Let us look a bit closer at it.

Inside navbar there is an element left which defines the posi-
tioning of the navigation bar. It can also be right, for example.
On the navbar we then place the individual pages - which are
none other the html renditions of the .qmd files. We see two
ways to place these individual pages.

One is where we give a custom label to the page: see lines 8 and
9. Another where we use the default label that derives from the
title of the individual page (remember that each RMarkdown
file has a yaml header and so has every .qmd file).

Tip 12: Listing all the individual pages

Remember to list in the navbar all the individual pages
you’d like to be rendered in the final website. Otherwise,
the website will not contain them!

Third, the element format allows us to format the website over-
all including, for example, a theme, css (cascading style sheets)
or even add a table of contents (toc). theme, css and toc and
attributes of the html document. Remember from Chapter 3
the concept of parameters? Well, that is pretty much the logic
here as well - these three are parameters of the html file that
we can modify according to our needs. This means that there

56



are multiple themes we can choose from and we can write our
very own .css style. We may decide to include a toc or not.

Tip 13: Further html themes

Select from this list of quarto html themes the one you’d
prefer

4.0.3 .css

The default .css file is empty. I would say that css is rather
advanced so I won’t cover it here. Typically, one can create
custom css styles for their website or can download templates
from the Internet. Be aware however what you download and
from where.

For the purpose of this seminar the default .css is more than
enough.

4.0.4 _site folder

This folder is created by default. It is the containing folder of
the rendered html files and other elements required for the final
website.

For the purpose of this seminar, this folder is important for us
because it contains the index.html file. By opening it on our
browser, we can inspect locally the rendered website.

4.0.5 Deployment

Once you’ve created and locally inspected your website, the
next step is to deploy it (publish) it online. Remember from
Chapter 1 that we would need an online repository like GitHub
and, most importantly, to have an open and encrypted channel
connecting the local machine and the server.

57

https://quarto.org/docs/output-formats/html-themes.html


One other way to publish your site is through quartopub.com.
Open an account on quartopub.com. We will deploy the web-
site using these two ways: GitHub and quartopub.com. I will
describe a bit why you might want to choose one or the other.

4.0.5.1 Via quartopub

This is a very simple way to deploy your website online. It is
integrated seamlessly with quarto so you only need two lines
of code in the Terminal. Really.

First, we need to render the website. To link together all the
files that we’ve created/ edited included the .qmd, .yml and
.css.

Copy the line below into the Terminal of your website project
and run it.

quarto render

Next, we can publish it via quartopub provided that we have
opened an account.

Copy the line below into the Terminal of your website project
and run it.

quarto publish quarto-pub

You will notice some code running and finally that in the
project folder there is a new yml file created _publish.yml.
If you open it, you will notice among other the URL to your
newly and publicly available website.

With this approach you deploy the website on a remote server
and your files remain available for editing only locally on your
machine. You also need to make sure that you render the web-
site after each modification to files making up the website.

The created example is published through quarto pub here.

58

https://quartopub.com/
https://adrian-stanciu.quarto.pub/example-website/


4.0.5.2 Via GitHub Pages

In some situations you might want to deploy the website and
upload the files comprising the website on a remote repository.
This means that your files can be made publicly available for
other to clone them or they are available to you in the “cloud”.
The website itself is deployed and everybody can access it but
in addition everyone can have access to the files that create the
website.

This approach might be preferable when you maintain a website
as a group. Or when you create a fancy website together with
colleagues from across the globe.

I wrote a step-by-step guide explanation for older generation
RMarkdown. This can be accessed here.

Returning to Quarto Website and assuming that a GitHub ac-
count has been created, you may follow the steps here. A sum-
mary of the steps are provided below:

1 - Create a Quarto Website project on your local machine.

2 - Make the folder containing the quarto website a git repos-
itory3.

git init

3 - Create an empty repository on your GitHub account. Then,
connect the local repository to the newly created online repos-
itory.

remote add origin git@github.com:{your github user}/{your repository where the website will be hosted}.git

4 - We will deploy the website by rendering it to a sub-folder
docs. To do this we need to modify the _quarto.yml document.
Open the .yml file, copy the following line and paste it as a sub-
element to “project”. This new line should be intended and be
aligned with the “type: website” element! Save and close the
.yml file.

3In Chapter 1 we covered the set up of GitHub and repositories including
installing a suite of code. Make sure that is done before attempting to
create the folder a git repository.

59

https://adrianstanciu.eu/sitedummy.html
https://quarto.org/docs/publishing/github-pages.html


output-dir: docs

5 - Create a .nojekyll file to the repository. Explanation is
given here. Go to the Terminal of the website project and run
the code line:

Mac/ Linux

touch .nojekyll

Windows

copy NUL .nojekyll

6 - Render the website. Note that the website will be automat-
ically rendered in the sub-folder docs.

quarto render

7 - We push everything to our GitHub repository.

git add .
git commit -m "Push website"
git push

8 - Check that the push was successful.

Figure 4.5: Contents of the created GitHub repository

Go on your GitHub account, open the repository and it should
look something like Figure 4.5.

60

https://quarto.org/docs/publishing/github-pages.html


Figure 4.6: Setup for deployment from main/docs

9 - Setup GitHub to “read” the website from the sub-folder
docs.

Navigate to Settings/ Pages and change under “Build and de-
ployment” the branch and folder according to Figure 4.6. Save
changes.

10 - A visit site panel will appear shortly, after the website has
been rendered and created, like in Figure 4.6. This may take
between a few seconds and a couple of minutes depending on
the server availability. Refresh the page and the website is now
publicly accessible.

11 - Now you can repeat steps 6 through 8 every time you
edited or modified contents for your website. The website itself
will be updated automatically (might take a couple of minutes
though).

The created example is published via GitHub pages here4.

Tip 14: Custom domains

You can publish your website (or book, as we will see in
the next section) on a custom domain. For this you’d need
to pay a monthly or yearly fee.
See for details this ultra-brief guide I wrote some time ago
but still remains valid.

4Note that I am using a custom domain at the root of which is my personal
website. In your case it would have a slightly different domain but the
website itself will look similar to the example shown.

61

https://adrianstanciu.eu/example/
https://adrianstanciu.eu/sitedummy.html#2_The_personalized_one


Online book

To start with Quarto Books, we should first create such a
project. The steps are similar to creating a Quarto Website.5

(a) Step 1 (b) Step 2

Figure 4.7: Steps to creating a Quarto Book project

When you create the project (see Figure 4.7), there will be sev-
eral files created by default: .qmd, .yml, .bib as well as a folder
“_book”. The files and folder already contain the fundamental
structure of a renderable book.

To open this default book on your local computer, navigate
inside the folder “_book” and open on your Internet browser
the index.html.

4.0.1 .qmd

See sub-section on .qmd for creating websites.

If you feel comfortable, create some content for the book, for
example, add a chapter about yourself.

4.0.2 .yml

This file type is identical to the one for creating websites. But,
there are different attributes addressed! See Figure 4.8.

First to notice, is that now the project we create is type: book.
We have learned from the website deployment section that, if

5As a matter of fact, you might have noticed by now that creating an R
project is this simple. You can follow these steps also when creating for
example a presentation or a publishable manuscript.

62



Figure 4.8: Attributes of the .yml file for books

we wanted, we could deploy the book via GitHub Pages. That
is why I already added the output-dir: docs in Figure 4.8.

Lines 5 through 13 hold attributes of the book. Remember that
for the website, we had specified attributes for website. So, at
line 4 in Figure 4.4 we had website: followed by attributes
whereas at line 5 in Figure 4.8 we have book: followed by
several attributes.

In our example, we have four book attributes including a title,
author, publication date and chapters. For a comprehensive
list of book attributes see here.

Tip 15: List all the chapters!

Remember to list under chapters: all the .qmd chapters
you’d want to render to the final book. Otherwise these
are not included. Note also that the order of chapters is
defined here.

At line 15, we see the bibliography: entry. We will cover this
shortly. But, this element is relevant for books and publishable
manuscripts alike. It renders to the final document a .bib file
that contains references.

At lines 17 through 21, we see the format: element, which is
similar to website creation. Next to the familiar .html format,
we now see also .pdf format. This means that we can render
the book both in html and pdf formats! Other formats are
likewise possible, for instance, .epub which are for e-readers.

63

https://quarto.org/docs/reference/projects/books.html


Tip 16: PDF of your book

You may inspect the PDF version of your book by nav-
igating inside the “_book” (or “docs”, depending on the
output-directory indicated in the .yml file) folder pro-
vided, of course, that you first rendered the book using,
for example, the code line quarto render.

4.0.3 .bib

The .bib file format is otherwise said what makes it possible
to integrate citations to your book or publishable documents
as part of the workflow. .bib files are a type of plain text files
(no hyperlinks or enhanced fields that are typical in standard
text editors like Microsoft Word).

Figure 4.9: Example of reference in .bib format

Read more on using .bib reference files here.

Many journals offer the possibility to download a .bib citation
of their articles. For example, navigate to this article Conner
and Armitage (1998) published at Journal of Applied Social
Psychology (open access). Identify the TOOLS button, press it,
and navigate to Export Citation where you can download a
BibTex (.bib) citation ready to be incorporated in your refer-
ence file.

One can use online tools for transforming plain text citations
into .bib citation format. For example, this converter. Use
this if you have a plain text list of references and you’d want
them transferred into a .bib file.

64

https://www.overleaf.com/learn/latex/Bibliography_management_with_bibtex
https://onlinelibrary.wiley.com/doi/abs/10.1111/J.1559-1816.1998.TB01685.X
https://onlinelibrary.wiley.com/doi/abs/10.1111/J.1559-1816.1998.TB01685.X
https://asouqi.github.io/bibtex-converter/


So, in our case, as shown in Figure 4.8 at line 15, we specify
bibliography: references.bib meaning that the bibliogra-
phy for the book should be constructed through rendering from
the file references.bib.

4.0.4 Deployment

4.0.4.1 Via quartopub

Book deployment is almost identical with the deployment of
websites.

The easiest option is to deploy through quarto pub. To do
this, we only need to do the following:

1 - Make sure we have opened an account on quarto.com

2 - render the book using the line code below (identical to the
one used for websites)

quarto render

It may take a couple of seconds until the book is rendered. And,
if it is the first time you render a qurto book it may take a bit
until the necessary dependencies are installed.

3 - Publish the book using one line of code.

quarto publish quarto-pub

The example book was published online through quarto.pub
here.

4.0.4.2 Via GitHub Pages

The example book was published online via GitHub pages
here. Similar to the website example, the book is attributed
to my personal website.

65

https://quartopub.com/
https://adrian-stanciu.quarto.pub/example-book/
https://adrianstanciu.eu/example-book/


Advanced resources

There are some alternatives out there, for example:

• To create a blog using the blogdown package. See a step-
by-step guide by Shilaan Alzahawi.

• To create a website using the distill package. See a
guide by Sally A.M. Hogenboom.

• A more comprenesive guide to creating a website using r
and RStudio is provided in this eBook by Danny Mor-
ris.

• A different (using older generation RMarkdown) way to
self-publish books online using r package bookdown. See
this guide by Yihui Xie who basically (co-)created all of
this that we are covering throughout the seminar.

Last, but not least. With quarto, one can publish even
articles. That is right, one can write using r publishable
manuscripts. Start here and see here the journals that already
support manuscript submission of quarto templates. This is
the cherry on top of the cake in view open and transparent
science.

66

https://www.shilaan.com/post/building-your-website-using-r-blogdown/
https://www.shilaan.com/post/building-your-website-using-r-blogdown/
https://r4sites-book.netlify.app/
https://bookdown.org/yihui/bookdown/publishing.html
https://quarto.org/docs/manuscripts/
https://quarto.org/docs/journals/


5 Shiny apps

Shiny applications, in short shiny apps, are applications cre-
ated in r with a shiny user interface. We have seen for the
first time the shiny user interface in Chapter 3 when we cre-
ated parameterized reports.

shiny apps are extremely useful when the goal is to engage
with the audience or readership or supervisors in an interactive
and dynamic manner. This application type is powerful be-
cause it builds on the programming language r and integrates
user design features.1 2

Here are examples of shiny apps from my work and others.3

1python programming language is likewise supported but won’t be covered
in this short book. See the official website for more.

2One can integrate shiny app features in quarto documents as described
here.

3Some of these apps might take a bit of time until they load because they
might be “asleep”. A shiny app is asleep when there is no activity for
a pre-determined time thus the server cleans up working memory by
putting inactive apps to sleep.

67

https://shiny.posit.co/py/
https://quarto.org/docs/interactive/shiny/


1 - Predicted as observed created by Dr. Julian Kohnke. Read
explanation paper by Witte, Stanciu, and Zenker (2022).

2 - Quantum social sciences created by myself. Read explana-
tion preprint by Witte and Stanciu (2023).

3 - Elements of cross-cultural research created by Maksim Rud-
nev.

Generally, I feel that the beginner’s guide on the official shiny
website is more than enough. In this section, we will cover only
the basics and address some of the tricky and subtle knowledge
about writing code for shiny apps. There are not many, but
the few that are can become frustrating.

To make things a bit more interesting, we will transform the
parameterized report build in Chapter 3 into a shiny app while
adding a few additional interactive features to it.

Tip 17: Shiny guide

The official shiny beginner’s guide is simple, useful, and
full of fun and interactive examples. Navigate to this
guide here.

The set-up

(a) Step 1 (b) Step 2

Figure 5.1: Steps to creating a Shiny Application project

Figure 5.1 should by now be a familiar routine: We create an
R project that has a default working app. Once you’ve created
the project, you will note only one file: app.R (next to the
.Rproj extension, of course).

68

https://adrian-stanciu.shinyapps.io/Similarity-Index/
https://www.juliankohne.com/
https://adrian-stanciu.shinyapps.io/quantapsych/
https://maksimrudnev.com/basic-values-app/
https://maksimrudnev.com/
https://maksimrudnev.com/
https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/


The .R file format is an r script file format. Meaning, that
you can write r code, save it and even run it without hav-
ing to transfer the code to the console. Remember that in
RMarkdown and quarto documents, we worked with r code
chunks. Well, the .R script files are much like a gianormous
code chunk.

Remember the dataset Stanciu et al. (2017) introduced in
Chapter 1? We will use it in creating our very own shiny
app.

Tip 18: R script files

Note that r script files can hold only basic code mean-
ing that features from RMarkdown and quarto are not
available. If you’d like to integrate HTML or other lan-
guages, that is possible, but requires appropriate integra-
tion which we do not cover here.

If everything went well, we should have the shiny package al-
ready installed from Chapter 1. But, if you haven’t done so
yet, or are unsure about it, now is a good time to install this
package.

install.packages("shiny")
library(shiny)

R script files

.R script files can be very useful not only for shiny apps but
also for websites or books. Writing code in such file format
can keep the work environment neat and tidy. Also, you might
want to use script files when you know in advance that you have
repetitive code (e.g., functions) that you use across several of
your projects.

One example where I personally apply this work strategy is
when writing my own functions (see Chapter 2). Instead of
writing a function each time I would need it, I include all func-
tions I create into an .R script file which I then copy-paste to all

69



my projects. Other strategies are possible, for example, install
all packages in a separate script file or divide the work flow in
programming into several steps - data import, data cleaning,
data manipulation, data analysis, and data ready to report.

When working with code stored in separate script files we need
to call these into the main document, for instance, in an RMark-
down, quarto or shiny app.

This is easily done with the function source("{yourrscript
here}"). Make sure that the path dependency is correct and
that the script is wrapped around " ".

Tip 19: Calling R data files

When we work with data saved in an R format such as
.Rds and .Rdata, we can call this dataframe using the
function load("{your .Rdata dataframe here}"). Re-
member the path dependencies and the " "!

Before we start working on the shiny app let us save the data
(Stanciu et al. 2017) into an .Rdata format. This makes it
somewhat easier to import the dataframe in the shiny app code,
as it is already in an r format.

Building on the code written in Chapter 3, we save to an .Rdata
file format.

# imports data in SPSS .sav format
dfex<-haven::read_sav("data/sample.sav")

# saves R object dfex into an .Rdata format
# which we load into the shiny app shortly
save(dfex,file="data/sample.Rdata")

In Chapter 2 we wrote a basic function to add a constant to all
numeric columns to a data frame. We can copy this function
into an .R script so that we have access to it in writing our first
shiny app.

Create a new .R script file by navigating to File/ New File/
R Script. It will open an empty untitled script file. Copy the
function as is into this script file.

70



func1<-function(df,n){

tmp <- Filter(is.numeric, df) # we first filter the dataframe for numeric columns

tmp + n # we then add the constant to all the numeric columns
}

Tip 20: Packes for r scripts

Note that if you write custom scripts and store them in-
side r script files, you’d need to make sure that the re-
quired packages are called inside that script file. Use
the install.packages() or library() commands as de-
scribed in Chapter 2.

Shiny apps structure

What makes shiny apps powerful and at the same time a bit
tricky to program is the structure. Shiny apps have a user in-
terface (UI) that is wrapped around code that runs in the back-
ground on a server. When programming a shiny app therefore
we need to program both the design (UI) and the code that runs
on the server (server).

The UI part makes a shiny app attractive to the audience and,
if programmed right, can engage the audience in an interactive
and dynamic manner. Programming the UI part requires a
bit of orientation toward the audience for which the app is
designed. What are the minimum skills required to operate the
app? What theoretical and practical expertise is expected for
the audience to intuitively navigate the app? Read more on
user interface in general on the Wikipedia page.

The server part makes a shiny app, well, work. Here is where
code is written to import, clean, manipulate and analyse data,
metadata and all sorts of other things. One way that I find
helpful to think of the server part is to see it as the old-school R
coding on my local machine. When you use r for data analysis,
for example, you use this programming language in the console

71

https://en.wikipedia.org/wiki/User_interface


which then you run resulting in some form of output. Well, this
means technically that you interact with your computational
machine (CPU, for example) through the r programming lan-
guage. This very principle applies also for writing code for the
server for shiny apps.

This distinction is less intuitive when we run the shiny app on
the local machine. But, this distinction between UI and server
becomes crucial when we deploy the app on online repositories,
as we will see shortly. By deploying the app code structured
into UI and server, we tell the respective servers how to read
our code.

So, long story short, both the UI and server segments of a shiny
app code has its own pre-defined role and it is crucial for the
well functioning of the app that this structure is maintained.
Otherwise the app breaks.

Code for UI

This will not be a comprehensive code at all. But, it should
offer sufficient hands-on tips on how to start building your UI
for your first shiny app.

One thing to keep on the back of your mind is that in the UI
part we need to refer to objects from the server part. If we do
not call objects from the server in the UI part properly, the app
might still work but the audience will not have access to it.

Tip 21: Commas and brackets!

Make sure that you always use commas and close the
brackets appropriately. Otherwise, the design might not
look as intended or the entire code might break even.

My recommendation is to take some time to decide what do
you want to include in the app and what do you need for your
audience. For example, do you want the audience to view plots
or tables, and if yes, do you want these to be interactive? If that
is the case, what code do you need to write on the server part

72



and what is the final r object that you’d want to be displayed
for the audience via the UI?

So, for me at least, writing a shiny app is a bit of a forth and
back between the UI and server code.

5.0.1 Layout

(a) Basic panels of a shiny app.

(b) Corresponding code in the UI.

Figure 5.2: UI code and corresponding shiny outcome

sidebarLayout(): Inside this function we define the content
that will be displayed on the side of the app window. See red
panel of Figure 5.2a and the corresponding red panel in Fig-
ure 5.2b. One can also add elements to the layout of this panel.
For example try out the code below and see what happens.

# copy and paste this code line as the first argument inside the
# sidebarLayout() function followed by a comma
# I cannot stress this enough: Commas are super super important
# so do not forget them

73



position = "right"

sidebarPanel(): This is wrapped inside the sidebarLayout()
because it is just one element of several that can be placed on
the sidebarLayout of the app.

The attributes defined here are fed into the code on the server,
so make sure you chose the appropriate user input type.

mainPanel(): This contains the output, be it plain text, live
text, tables or figures. If in the sidebarPanel() you define the
user input attributes, in the mainPanel() you simply call the
objects computed on the server and programm how exactly will
they be displayed. See in blue Figure 5.2a and the correspond-
ing code in blue inside the UI Figure 5.2b.

5.0.2 Input types

Inside the sidebarPanel() we can define the kind of user input
we expect our audience to play with. That is – remember pa-
rameterized reports from Chapter 3 – what are the parameters
that users can interact with. There are a couple of input types,
for example, slider input on a continuous pre-defined numeric
range, select from a pre-defined list, check if TRUE or FALSE,
and a numeric only text field.

sliderInput(): This is given as an example in the de-
fault shiny app that comes pre-set when creating a shiny
app project. It is a slider input type. Observable are five
attributes:

• Label of the input "bins" which is a reference label for
the code

• Label of the input displayed to users ("Number of
bins:"). Note that this is different than input label
above and serves only the function of informing the
user. The input label above serves the function of
cross-reference in code writing.

• min and max define the minimum and maximum of the
numeric range of the slider.

74



• value defines the default value of the slider which is dis-
played every time the app is called.

selectInput(): This is a select from a pre-defined list input
type. In the basic form, it requires three attributes:

• Label of input for cross-referencing in the code.

• Label of input for display for the app users.

• Values of the pre-defined list. Note that these should be
places inside a list, which has this basic structure:

c("{NAME 1 TO BE DISPLAYED}" = "{value 1 for code cross-referencing}",
"{NAME 2 TO BE DISPLAYED}" = "{value 2 for code cross-referencing}"...)

It may look like this (code from Witte and Stanciu (2023)).

selectInput("hov",
"Choice: ",

c("all",
"Openness to change" = "och",
"Conservation" = "con",
"Self Transcendence" = "str",
"Self Enhancement" = "sen")

)#closes selectInput

checkboxInput(): This is a yes/ no logical input type. Ideally,
you always define at least three atributes:

• Label of input for cross-referencing in the code.

• Label of input for display for the app users.

• value is true (value = T) or false (value = F).

It may look like this (code from Witte and Stanciu (2023)).

checkboxInput("p1.ess","Distribution", value = F)

numericInput(): This an input type that allows the user to
type in numeric values within a pre-defined range with a pre-
defined increment value. One can define the following:

75



• Label of input for cross-referencing in the code.

• Label of input for display for the app users.

• value is the default value show every time the app is
opened.

• min and max define the range of possible values within
which the user can choose to enter from. Note that this
range is not visible to the user but it is a by-design-
limitation. An error is shown or simply the input is not
validated if the user enters a value outside this pre-defined
range.

• step defines the increment value. It can be a full integral
number or anything inbetween.

It may look like this (code from Witte and Stanciu (2023)).

numericInput("n",
label = "Sample size",
value = 20,
min = 20,
max = 1000,
step = 1)

5.0.3 Conditional panels

There might be situations where you’d want to create a condi-
tional user interface. This means that the UI experience can,
at some pre-defined parts, be conditional on user input. For
instance, for the app Quantum Social Science, I created a UI
dependent on type of analysis: choice. There are three choices
the user can select: Simulations, Survey data or Experimental
data (which is still under construction). Depending on the user
choice at this stage, the user has different options to choose
from - either interact with simulated data or with secondary
data.

It may look like (code from Witte and Stanciu (2023)).

76

https://adrian-stanciu.shinyapps.io/quantapsych/


conditionalPanel(
condition= "input.type=='Simulations'",

... # the code continues here with input values

conditionalPanel(): Wrapped inside one can code the UI
conditional on an input defined at a previous stage. Let us pay
a closer look at the example above:

condition = "input.type=='Simulations'":

• condition = introduces the condition that needs to hold
for the contents of the rest of conditionalPanel to be ac-
tivated.

• "input.type=='Simulations'" is the condition itself
which is to be read as follows: if the input of input object
“type” is identical to “Simulations”, then the subsequent
contents are activated. See Figure 5.3.

Figure 5.3: Exerpt from UI code of Witte and Stanciu (2023)

5.0.4 Tabset

There can be situations where it is helpful to organize output
into separate panels – similar logic to having several tabs open
on your web browser.

The app Predicted as observed created by Julian Kohne for
the paper Witte, Stanciu, and Zenker (2022) nicely uses this
feature.

In the mainPanel() the “Abstract” of the paper, followed by
“Check assumptions”, the calculation of the “Similarity Index”
and display of the “Similarity Interval”, and, finally, “Recom-
mendations” are organized neatly into tabs. The user can nav-
igate these tabs knowing the kind of content to expect.

77

https://adrian-stanciu.shinyapps.io/Similarity-Index/
https://www.juliankohne.com/


tabsetPanel(): defines the overall structure within which mul-
tiple panels can be placed.

tabPanel(): defines the content be placed inside a tab. This
is coded inside tabsetPabel()!

It may look something like this.

tabsetPabel(
tabPanel1("label 1 for display to user", {content 1 here}),
tabPanel2("label 2 for display to user", {content 2 here})

)

Code for server

The code for the server is a custom function, a gianormous
custom function! Like any custom functions (see Chapter 2),
there is a structure to it, namely function(){}.

The server function takes two arguments, namely input and
output.

input signals what comes from the UI interface. That is, what
the user of the app is inputing via the UI.

output signals what goes from the server to the UI. That is,
what the user views as a result of interacting with the app.

5.0.1 Reactive objects

The simplest way to think of reactive objects is to see them
as plain old-school R code wrapped inside an object that the
server needs to compute. It is reactive, because the server has
to first compute the reactive object before performing any tasks
that call on such an object.

In r code written for computation on the local machine it would
be called simply an r object.

On the server, however, code is computed only when needed
which makes objects created on the server reactive to code that

78



requires them. They react if you poke them. Otherwise, they
sleep.

Tip 22: Mind the brackets

This is one of those ultra small details that took me days
to figure out. When you create a reactive object, remem-
ber to always call it as such. It is an r object all right,
but it looks like a function: reactiveobject().

A reactive object, like all objects coded for the server, need to
be wrapped in a specific function, otherwise the server will not
recognize it as such.

Tip 23: Server code

Code for the server – whether it is reactive, input or out-
put objects – needs to be written inside ({YOUR SERVER
CODE HERE}). It is a specific code chunk for the server.
Its logic is similar to the code chunk introduced in Chap-
ter 3 – it is a field recognized by the server as code to be
computed.

Once a reactive object was coded following the code structure
introduce in Tip 23, the reactive object itself can be called
inside other code on the server following the structure presented
in Tip 22.

5.0.2 Input objects

Technically speaking, input objects are reactive objects. But,
I discuss them separately because these feed user input to the
code.

This can be recognized and done by adding the prefix input$
when calling user input.

In the code example from Witte, Stanciu, and Zenker (2022)
(see Figure 5.4a), a reactive object tmp.df is coded at lines 385
– 395.

79



(a) Example code reactive and in-
put object. (b) Corresponding UI code for in-

put objects.

Figure 5.4: Code example for reactive objects with user input

This reactive object happens to be using user input information
as indicated at lines 387 – 390.

To illustrate the correspondence between UI and the server, see
in Figure 5.4b the user defined object n at lines 95 – 100 and
the user defined object m0 at lines 102 – 107.

5.0.3 Output objects

Output objects are the output that we want to be displayed on
the user interface. This means that we have to call it as such
and indicate the position where we want it displayed.

Ideally, we have already coded the display position and display
characteristics in the UI code.

On the server, we need to indicate the object corresponding to
the UI code accordingly. When we feed user input to the server
code we write the prefix input${USER INPUT}. Well, when we
want an object displyed on the user interface we write the prefix
output${corresponding label in the UI code}.

Note the dollar sign $!

In Figure 5.5a, we see at lines 36 – 38 (red field) the UI code
for object distPlot to be displayed. At lines, 45 – 54 (blue
field), we see the server code for this object. Finally, in Fig-
ure 5.5b (blue field), we see the output plot displayed for user
experience.

80



(a) UI code and corresponding
server code for output object.

(b) Corresponding plot display in
the user interface.

Figure 5.5: Shiny app full circle: ui, server and user experience

Tip 24: Output objects need adequate functions

When writing output objects, these need to be wrapped
inside designated code chunks – for plots or tables or text.
See this official cheat sheet.

Run the app locally

Running the app locally is as simple as pressing the button Run
App on the bar – see for instance Figure 5.2b.

Note however that this is in fact calling a function written inside
the app.R script.

This function is shinyApp(ui = ui,server = server). The
shinyApp() function takes two arguments ui and server which
we define separately, as indicated above.

A new window will open. You might note two things in the
console:

1. The console is busy with the app, as indicated by the
STOP symbol.

2. The text in the console Listening on {an IP address}.

These two things indicate that the app is running and that the
console cannot be used for other purposes. It also means that

81

https://rstudio.github.io/cheatsheets/html/shiny.html


the app is automatically updated if you are to modify the code,
UI or server. It also means that your local machine acts as the
server in this case.

The moment you close the app, the console becomes available
once more.

Deployment

To deploy the app, we would need a dedicated server and, of
course, an access account on that server. One efficient and
smooth way to deploy a shiny app online is to use the dedi-
cated server shinyapps.io. It is a free service maintained by the
same community behind RStudio – posit.co.

To start with, open an account on shinyapps.io. Once you have
an account, we can turn back to our app that we’ve coded in
RStudio.

Figure 5.6: Steps to shiny app deployment on external server.

Next to the button Run App there is another button called
Publish the application or document. Click on it and fol-
low the steps as indicated. Note that in Figure 5.6, the app has
already been deployed so there is a connection with the exter-
nal server made. If you publish an app for the first time, you
will only see the option Publish Website.... Select from the

82

https://www.shinyapps.io/
https://posit.co/


options shinyapps.io and follow the instructions. In a matter
of a few secods your app will be online!4

Tip 25: Select your files to deploy

Not all files are needed for the final app to function. When
you deploy the app, select those files from your local repos-
itory that the app actually needs to function. By do-
ing this, you make sure that the server is not filled with
junk. After all, your free shinyapps.io account has lim-
ited space.

The illustrative example is deployed online here. See also sub-
section below.

(Optional) Push to GitHub

One further thing we might want to do is to push the script
files to GitHub as discussed in Chapter 4.

Try doing that yourself. I pushed my script files on a public
GitHub repository that can be accessed here5.

Progress illustrative example

Below is the entire code for the illustrative example that was
transformed from a parameterized report into a shiny app.

You can try to replicate it by yourself and compare it with
mine. Or copy paste it directly into a app.R script and run it.
The choice is yours.

4Connecting to the server and deploying the app might take some time.
Once the app has been successfully deployed, it will open automatically
in your default web browser.

5Note that you need to be logged-in to your GitHub account to see the
script files

83

https://adrian-stanciu.shinyapps.io/Example-shiny/
https://github.com/adrianvstanciu/Example-shiny


### calls r script files
source("functions.R")

### loads data
load("data/sample.Rdata")

### imports libraries
library(shiny)

r <- getOption("repos")
r["CRAN"] <-"https://cloud.r-project.org/"
options(repos=r)

# install.packages("pacman")

# pacman::p_load(tidyverse,readxl,haven,sjlabelled,kable,kableExtra)

#### shiny app starts here ###

# Define UI for application that draws a histogram
ui <- fluidPage(

# Application title
titlePanel("Illustrative example"),

# Sidebar with a slider input for number of bins
sidebarLayout(position = "left",

sidebarPanel(

# actor input
selectInput("actor",

label="Choose an actor:",
c("Keanu Reeves",

"Alec Baldwin",
"Arnold Schwarzenegger",
"Timothee Chalamet",
"Anamaria Marinca"),

multiple = TRUE),

84



# stereotype input
selectInput("stereotype",

label="Stereotype dimension:",
c("Warmth women" = "wom_warm",

"Competence women" = "wom_comp",
"Warmth men" = "men_warm",
"Competence men" = "men_comp"))

),

# Show a plot of the generated distribution
mainPanel(

h3("Output displayed here",),
# start tabset Panel
tabsetPanel(

# tab 1
tabPanel("Actors",

tags$p(HTML(paste("A table is generated based on the actors chosen on the side panel..", sep = "")) ),

DT::dataTableOutput("act") ),

# tab 2
tabPanel("Stereotypes",

tags$p(HTML(paste("A plote is generated based on the variable chosen on the side panel..", sep = "")) ),

plotOutput("st") )

) # close tabset Panel
)

)
)

# Define server logic required to draw a histogram
server <- function(input, output) {

####### -- imports and prepares data from here

85



# reactive object
# data from Stanciu et al. 2017

tempdf <- reactive({

choice=input$stereotype

dfex %>%
sjlabelled::remove_all_labels() %>%
pivot_longer(contains("warm") | contains("comp")) %>%
filter(name %in% choice)

})

# reactive object
# meta data movies
movietmp<- reactive({

dfmv<-readxl::read_excel("mat/movies.xlsx",1) %>%
filter(Actor %in% input$actor)

})

#### -- generates output objects from here

# generate ggplot
plottmp<- reactive({

## ggplot code
(input$plot_type == "ggplot2")

ggplot(tempdf(), aes(x=factor(gen),y=value)) +
labs(title=paste0("Evaluation based on ", input$stereotype),

x="Gender",
y=paste0("Stereotype of ", input$stereotype)) +

geom_boxplot() +
theme_light()

})

##### -- code for output from here

86



# render plot for user
output$st <- renderPlot({

plottmp()
})

output$act <- DT::renderDataTable({

movietmp()
})

}

# Run the application
shinyApp(ui = ui, server = server)

Note however that you’d still need to create all the external
scripts and r data files.

Advanced resources

If you really really like shiny apps and want to master them,
then this book by Hadley Wickham contains everything one
needs to know. Other online resources are available and offer
varying levels of complexity.

87

https://mastering-shiny.org/index.html


6 Parting words

This short book introduces the basics to getting started with
using R beyond data analysis.

The book promotes an integrated workflow where r has a piv-
otal role. With the help of r and the associated tools, such
as RStudio and GitHub, we have seen how we can create au-
tomatized reports to reduce repetitive tasks (Chapter 3). We
have also seen that we can create our own websites and publish
online books (Chapter 4). Finally, we have also seen that we
can write web applications to engage with our audience (Chap-
ter 5).

Taken together, and in due time, one can create for oneself
a work routine that from the start adheres to open science
practicies and in so doing makes their own work reproducible,
transparent, and publically available.

R is a powerful programming language that can help in tran-
sitioning from close-ended data analysis software such as SPSS
to programming-based data analysis. One benefit of this is
that through r one can discover a universe of new possibili-
ties – for example, linking data analysis with communication
strategies.

r is but one of the possible programming languages. The more
one becomes accustomed with a programming-based logic in
handling data, the easier it gets to integrate other program-
ming languages into their workflow. For example, through their
integrated development environment (IDE) of choice – in this
case we’ve used RStudio.

RStudio facilitates the seamless integration of various program-
ming languages (e.g., r, python, Julia) in enhanced documents
(e.g., RMarkdown, Quarto) from which powerful and dynamic
output files can be generated.

88



This short book was meant as a beginner’s guide. Throughout
the book advanced resources have been introduced.

And remember…

Begin small but, aim high.

Advanced resources

If you still are not convinced of how powerful R can be, then
what about this: You can create art using r. That is right!
There are several packages available that can help you get in
touch with your creative side while not ignoring your love for
data!

Figure 6.1: Example of r generated art using the package
aRtsy.

aRtsy package is downloadable as explained here and
attributed to Derks (2023).

Danielle Navarro provides a workshop for art from code using
R: see here.

89

https://koenderks.github.io/aRtsy/
https://art-from-code.netlify.app/


About the author

Some of the images used throughout
this short book were generated using
Microsoft Copilot.

Dr. Adrian STANCIU is assistant professor in lifespan devel-
opmental psychology (focus on adult development and digitiza-
tion) at the University of Luxembourg. He studies how through
digital technologies the life quality and health of older migrants
can be improved and sustained longterm. He is likewise re-
searching on human values, mental health, and methodology
of assessment, often in international collaborations and in an
interdisciplinary approach.

Note that this short book is
self-published online adhering to the
creative common licensing CC
BY-NC. All the copyrights are
reserved by the author, Asst.
Prof. Dr. Adrian Stanciu.

If you are not sure how to use and/
redistribute its contents, see for
details here.

90

https://adrianstanciu.eu/index.html
https://www.uni.lu/fhse-en/people/adrian-stanciu/
https://creativecommons.org/licenses/by-nc/4.0/


References

Conner, M., and Christopher J. Armitage. 1998. “Extending
the Theory of Planned Behavior: A Review and Avenues for
Further Research.” Journal of Applied Social Psychology 28
(15): 1429–64. https://doi.org/10.1111/j.1559-1816.1998.
tb01685.x.

Derks, Koen. 2023. aRtsy: Generative Art with ’Ggplot2’.
https://CRAN.R-project.org/package=aRtsy.

Stanciu, A., C. J. Cohrs, K. Hanke, and A. Gavreliuc. 2017.
“Within-Culture Variation in the Content of Stereotypes:
Application and Development of the Stereotype Content
Model in an Eastern European Culture.” The Journal of So-
cial Psychology 157 (5): 611–28. https://doi.org/10.1080/
00224545.2016.1262812.

Witte, E. H., and A. Stanciu. 2023. “Error Theory of Mental
Test Scores Without and with a Measurement Instrument.”
https://doi.org/10.31219/osf.io/9ap6m.

Witte, E. H., Stanciu A., and F. Zenker. 2022. “Predicted
as Observed? How to Identify Empirically Adequate The-
oretical Constructs.” Frontiers in Psychology 13: 980261.
https://doi.org/10.3389/fpsyg.2022.980261.

91

https://doi.org/10.1111/j.1559-1816.1998.tb01685.x
https://doi.org/10.1111/j.1559-1816.1998.tb01685.x
https://CRAN.R-project.org/package=aRtsy
https://doi.org/10.1080/00224545.2016.1262812
https://doi.org/10.1080/00224545.2016.1262812
https://doi.org/10.31219/osf.io/9ap6m
https://doi.org/10.3389/fpsyg.2022.980261

	Preface
	
	General introduction
	Why this seminar?
	Reason 1
	Reason 2
	Reason 3

	What else is good to know?
	Some wizardry stuff
	GitHub
	Pushing, pulling, cloning and commiting
	GitHub client

	Illustrative example
	Background
	The plan


	R universe
	R (the console and language)
	The basics (the very basics!)
	Objects
	Vectors
	Data tables

	Functions
	Packages
	Base R vs. Packages
	RStudio
	Advanced resources

	Automatization
	Elements and structure
	Knit
	Live documents
	Path dependencies
	The set up
	Importing data
	Plain text vs. live text
	Live text in focus
	Automated graphs and tables

	Knit with parameters
	Example progression
	Changing setup to parameterized report
	Knitting the document
	Something to do by yourself
	Another table example

	Advanced resources
	Towards shiny apps
	Quarto


	Self-publish
	Prepping Quarto
	Website
	.qmd
	.yml
	.css
	_site folder
	Deployment

	Online book
	.qmd
	.yml
	.bib
	Deployment

	Advanced resources

	Shiny apps
	The set-up
	R script files
	Shiny apps structure
	Code for UI
	Layout
	Input types
	Conditional panels
	Tabset

	Code for server
	Reactive objects
	Input objects
	Output objects

	Run the app locally
	Deployment
	(Optional) Push to GitHub
	Progress illustrative example
	Advanced resources

	Parting words
	Advanced resources

	About the author
	References

